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Outsmarting quantum chemistry through transfer learning 

This work demonstrates empirical potentials based on Deep Neural 

Networks can surpass the accuracy of Density Functional Theory (DFT) 

by using Transfer Learning: A potential is first trained to reproduce a 

large quantity of DFT data, and then fine-tuned by partially retraining to 

ultra-high-fidelity Coupled-Cluster calculations. The result is the best-

to-date empirical model of small organic molecules – far more accurate 

than traditional Force Fields, and far faster than ab-initio simulation. 

 
Left-Top: A neural network potential is trained to density functional theory (DFT) data, then 
retrained to a smaller data set of highly accurate coupled cluster calculations. Right-Top: The 
transfer learned ANI-1ccx model predicted atomization energies vs. reference coupled cluster 
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with an error 3x lower than the original DFT method. This test set is built from molecules larger 
than those included in the training data set, which shows the models extensibility to larger 
molecules. Bottom: The ANI-1ccx potential out performs state-of-the-art force fields and DFT 
methods at the prediction of torsion profiles for small druglike molecules. 

The Science  

Los Alamos National Laboratory collaborates with the University of North Carolina at Chapel Hill 

and University of Florida to build the world’s first coupled cluster accurate general-purpose 

neural network-based atomistic potential for organic molecules. This potential, dubbed ANI-1ccx, 

can compute energies and forces at many orders of magnitude faster than coupled cluster 

methods. These ML potentials scale linearly with the number of atoms rather than O(N5) or 

higher for coupled cluster methods. These models are developed by training a neural-network to 

predict density function theory (DFT) energies for 5 million diverse molecules, then retraining the 

model to a smaller dataset of 500k highly accurate coupled cluster energies. The transfer learning 

approach shows significantly better accuracy than training to the coupled cluster data alone, 

without using transfer learning. Three test cases are used to benchmark the resulting ANI-1ccx 

potential. The first compares atomization energy, absolute energy, and forces from accurate ab 

initio methods. The second compares ANI-1ccx vs. DFT on reaction and isomerization energy 

benchmarks. The third explores how well the resulting potential performs on a small druglike 

molecule torsion profile benchmark. In each case, the ANI-1ccx potential outperforms industry 

standard DFT methods and force fields while maintaining a high level of computational efficiency. 

The Impact 

Empirical potentials are key for enabling computational research into molecules and materials, 

as ab-initio atomistic simulation is often too expensive – especially so for the purposes of 

screening the immense space of possible chemical compounds. An accurate, transferable, and 

computationally efficient method for obtaining potential energies and forces will revolutionize 

many areas of research in chemistry and physics. Making these methods as general as possible 

expands the range of applicability of the resulting models. ANI-1ccx is accurate, general, and fast 

enough to be deployed in long time scale simulations or high throughput studies of millions of 

molecules. The ANI-1ccx potential promises to advance the capabilities of researchers in many 

fields, including drug development, reactive chemistry, and protein simulation. Further, the 

techniques developed in this work can be employed to improve the accuracy of machine learning-

based potentials in future studies of metal alloys and detonation physics. 

Summary 

Understanding and explaining the atomic level physical phenomena that drive the behavior of 

bulk materials is paramount in modern science. Existing methods for accomplishing these goals 
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are either too slow or not accurate enough to provide meaningful insight. Machine learning-

based atomistic potentials provide highly accurate and efficient predictions of energies and 

forces. The transfer learning methods introduced in this work provide a path towards fitting 

general-purpose atomistic potentials with the accuracy of high level coupled cluster calculations. 

The resulting potential outperforms the industry standard DFT methods and all atom force fields 

while retaining computational linear scaling in number of atoms. 
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